goula.sh

📙 The Beginning of Infinity

Highlights from March 28th, 2021.

Quantum theory is the deepest explanation known to science. It violates many of the assumptions of common sense, and of all previous science – including some that no one suspected were being made at all until quantum theory came along and contradicted them. And yet this seemingly alien territory is the reality of which we and everything we experience are part.
The world is the whole of physical reality. In classical (pre-quantum) physics, the world was thought to consist of one universe – something like a whole three-dimensional space for the whole of time, and all its contents. According to quantum physics, as I shall explain, the world is a much larger and more complicated object, a multiverse, which includes many such universes (among other things).
Dollars in bank accounts are what may be called ‘configurational’ entities: they are states or configurations of objects, not what we usually think of as physical objects in their own right.
It turns out that, in quantum physics, elementary particles are configurational entities too. The vacuum, which we perceive as empty at everyday scales and even at atomic scales, is not really emptiness, but a richly structured entity known as a ‘quantum field’. Elementary particles are higher-energy configurations of this entity: ‘excitations of the vacuum’.
These remarks about unpredictable phenomena could be expressed without ever referring explicitly to fungibility. And indeed that is what multiverse researchers usually do. Nevertheless, as I have said, I believe that fungibility is essential to the explanation of quantum randomness and most other quantum phenomena.
After the universes in our story begin to differ inside one starship, everything else in the world exists in pairs of identical instances. We must continue to imagine those pairs as being fungible. This is necessary because the universes are not ‘receptacles’ – there is nothing to them apart from the objects that they contain. If they did have an independent reality, then each of the objects in such a pair would have a property of being in one particular universe and not the other, which would make them non-fungible.
Thus, starting with the voltage happening in only one universe, a wave of differentiation between the universes spreads in all directions through space. Since information travelling in either universe cannot exceed the speed of light, nor can the wave of differentiation. And since, at its leading edge, it mostly travels at or near that speed, differences in the head start that some directions have over others will become an ever smaller proportion of the total distance travelled, and so the further the wave travels the more nearly spherical it becomes. So I shall call it a ‘sphere of differentiation’.
For a typical physical quantity, there is a smallest possible change that it can undergo in a given situation. For instance, there is a smallest possible amount of energy that can be transferred from radiation to any particular atom. The atom cannot absorb any less than that amount, which is called a ‘quantum’ of energy.
There is only one known phenomenon which, if it ever occurred, would have effects that did not fall off with distance, and that is the creation of a certain type of knowledge, namely a beginning of infinity. Indeed, knowledge can aim itself at a target, travel vast distances having scarcely any effect, and then utterly transform the destination.
There is a way – I think it is the only way – to meet simultaneously the requirements that our fictional laws of physics be universal and deterministic, and forbid faster-than-light and inter-universe communication: more universes.
They know that a voltage surge will occur in half the universes in that history, which means that it will split into two histories of equal measure. Hence they know that, if they use a voltmeter capable of detecting the surge, half of the instances of themselves are going to find that it has recorded one, and the other half are not. But they also know that it is meaningless to ask (not merely impossible to know) which event they will experience. Consequently they can make two closely related predictions. One is that, despite the perfect determinism of everything that is happening, nothing can reliably predict for them whether the voltmeter will detect a surge.
The other prediction is simply that the voltmeter will record a surge with probability one-half. Thus the outcomes of such experiments are subjectively random (from the perspective of any observer) even though everything that is happening is completely determined objectively. This is also the origin of quantum-mechanical randomness and probability in real physics: it is due to the measure that the theory provides for the multiverse, which is in turn due to what kinds of physical processes the theory allows and forbids.
Thus the information in the fictional multiverse flows along a branching tree, whose branches – histories – have different thicknesses (measures) and never rejoin once they have separated. Each behaves exactly as if the others did not exist. If that were the whole story, that multiverse’s imaginary laws of physics would still be fatally flawed as explanations in the same way that they have been all along: there would be no difference between their predictions and those of much more straightforward laws saying that there is only one universe – one history – in which the transporter randomly introduces a change in the objects that it teleports.
In quantum physics, information flow in the multiverse is not as tame as in that branching tree of histories I have described. That is because of one further quantum phenomenon: under certain circumstances, the laws of motion allow histories to rejoin (becoming fungible again).
Interference is the phenomenon that can provide the inhabitants of the multiverse with evidence of the existence of multiple histories in their world without allowing the histories to communicate.
Now, put a proton into the middle of that gradually spreading cloud of instances of a single electron. The proton has a positive charge, which attracts the negatively charged electron. As a result, the cloud stops spreading when its size is such that its tendency to spread outwards due to its uncertainty-principle diversity is exactly balanced by its attraction to the proton. The resulting structure is called an atom of hydrogen.
Historically, this explanation of what atoms are was one of the first triumphs of quantum theory, for atoms could not exist at all according to classical physics.
penetrate each other, yet solar systems certainly could. Furthermore, it turns out that, in the hydrogen atom, the electron in its lowest-energy state is not orbiting at all but, as I said, just sitting there like an ink blot – its uncertainty-principle tendency to spread exactly balanced by the electrostatic force. In this way, the phenomena of interference and diversity within fungibility are integral to the structure and stability of all static objects, including all solid bodies, just as they are integral to all motion.
The term ‘uncertainty principle’ is misleading. Let me stress that it has nothing to do with uncertainty or any other distressing psychological sensations that the pioneers of quantum physics might have felt. When an electron has more than one speed or more than one position, that has nothing to do with anyone being uncertain what the speed is, any more than anyone is ‘uncertain’ which dollar in their bank account belongs to the tax authority. The diversity of attributes in both cases is a physical fact, independent of what anyone knows or feels.
Even different electrons do not have completely separate identities. So the reality is an electron field throughout the whole of space, and disturbances spread through this field as waves, at the speed of light or below. This is what gave rise to the often-quoted misconception among the pioneers of quantum theory that electrons (and likewise all other particles) are ‘particles and waves at the same time’. There is a field (or ‘waves’) in the multiverse for every individual particle that we observe in a particular universe.
Universes, histories, particles and their instances are not referred to by quantum theory at all – any more than are planets, and human beings and their lives and loves. Those are all approximate, emergent phenomena in the multiverse.
A history is part of the multiverse in the same sense that a geological stratum is part of the Earth’s crust.
Spheres of differentiation tend to grow at nearly the speed of light, so, on the scale of everyday life and above, those coarse-grained histories can justly be called ‘universes’ in the ordinary sense of the word. Each of them somewhat resembles the universe of classical physics. And they can usefully be called ‘parallel’ because they are nearly autonomous. To the inhabitants, each looks very like a single-universe world.
For example, consider a single cosmic-ray particle travelling in the direction of Earth from deep space. That particle must be travelling in a range of slightly different directions, because the uncertainty principle implies that in the multiverse it must spread sideways like an ink blot as it travels. By the time it arrives, this ink blot may well be wider than the whole Earth – so most of it misses and the rest strikes everywhere on the exposed surface. Remember, this is just a single particle, which may consist of fungible instances. The next thing that happens is that they cease to be fungible, splitting through their interaction with atoms at their points of arrival into a finite but huge number of instances, each of which is the origin of a separate history.
In other histories, one of those cosmic-ray particles will strike a human cell, damaging some already damaged DNA in such a way as to make the cell cancerous. Some non-negligible proportion of all cancers are caused in this way. As a result, there exist histories in which any given person, alive in our history at any time, is killed soon afterwards by cancer. There exist other histories in which the course of a battle, or a war, is changed by such an event, or by a lightning bolt at exactly the right place and time, or by any of countless other unlikely, ‘random’ events. This makes it highly plausible that there exist histories in which events have played out more or less as in alternative-history stories such as Fatherland and Roma Eterna – or in which events in your own life played out very differently, for better or worse.
A great deal of fiction is therefore close to a fact somewhere in the multiverse.

Highlights from March 28th, 2021.

All fiction that does not violate the laws of physics is fact.
Some fiction in which the laws of physics appear to be violated is also fact, somewhere in the multiverse.
So it is not quite true that, for instance, there are histories in which magic appears to work. There are only histories in which magic appears to have worked, but will never work again. There are histories in which I appear to have walked through a wall, because all the atoms of my body happened to resume their original courses after being deflected by atoms in the wall. But those histories began at the wall: the true explanation of what happened involves many other instances of me and it – or we can roughly explain it in terms of random events of very low probability. It is a bit like winning a lottery: the winner cannot properly explain what has just happened without invoking the existence of many losers. In the multiverse, the losers are other instances of oneself.
Whenever we observe anything – a scientific instrument or a galaxy or a human being – what we are actually seeing is a single-universe perspective on a larger object that extends some way into other universes. In some of those universes, the object looks exactly as it does to us, in others it looks different, or is absent altogether.